满分5 > 初中数学试题 >

如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的...

如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.

满分5 manfen5.com

(1)若AE=2,求EF的长;

(2)求证:PF=EP+EB.

 

(1);(2)证明见试题解析. 【解析】 试题分析:(1)如图由已知就可以得出∠EAF=∠DAB=90°,AB=AD,可以得出∠1=∠2,由对顶角可以得出∠5=∠6,从而可以证明△AEB≌△AFD,可以求得AE=AF,再利用勾股定理就可以求出EF的值; (2)如图,过点A作AM⊥EF于M,由(1)可知△AEF是等腰直角三角形,可以得出∠AME=90°,由已知可以证明△BEP≌△AMP,可以得出BE=AM,EP=MP,进而求出结论. 试题解析:(1)∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,∴AB=AD,BAD=∠EAF=∠BEF=90°,∴∠1+∠FAB=∠2+∠FAB=90°,∴∠1=∠2.∵∠3+∠5=∠4+∠6,且∠5=∠6,∴∠3=∠4.在△AEB和△AFD中,∵,∴△AEB≌△AFD,∴AE=AF=2,在Rt△EAF中,由勾股定理,得:EF=. (2)过点A作AM⊥EF于M,且∠EAF=90°,AE=AF,∴△EAF为等腰直角三角形.∴AM=MF=EM,∠AME=∠BEF=90°.∵点P是AB的中点,∴AP=BP.在△AMP和△BEP中,∵,∴△AMP≌△BEP,∴BE=AM,EP=MP,∴MF=BE,∴PF=PM+FM=EP+BE. 考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.等腰直角三角形.
复制答案
考点分析:
相关试题推荐

某商店将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高商品售价减少销售量的办法增加利润,如果这种商品按每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?

 

查看答案

如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

满分5 manfen5.com

(1)请直接写出点A关于y轴对称的点的坐标;

(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;

(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.

 

查看答案

先化简,再求值:满分5 manfen5.com,其中满分5 manfen5.com满足方程满分5 manfen5.com

 

查看答案

解方程:满分5 manfen5.com

 

查看答案

计算:满分5 manfen5.com

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.