已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(21,0),C(0,6),动点D在线段AO上从点A以每秒2个单位向点O运动,动点P在线段BC上从点C以每秒1个单位向点B运动.若点D点P同时运动,当其中一个动点到达线段另一个端点时,另一个动点也随之停止.
(1)求点B的坐标(1分);
(2)设点P运动了t秒,用含t的代数式表示△ODP的面积S(3分);
(3)当P点运动某一点时,是否存在使△ODP为直角三角形,若存在,求出点P的坐标,若不存在说明理由(8分).
某旅行社为了吸引市民组团游四面山风景区,在国庆节期间推出如下收费标准:
某单位组织员工去四面山风景区旅游,共支付给武当旅行社旅游费用27000元,请问该单位共有多少员工参加这次旅游?
有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。
(1)当为 秒时,边恰好经过点;当为 秒时,运动停止;
(2)在平移过程中,设与重叠部分的面积为,请直接写出与的函数关系式,并写出的取值范围;
(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)
如图,抛物线交轴于两点(的左侧),交轴于点,顶点为。
(1)求点的坐标;
(2)求四边形的面积;
(3)抛物线上是否存在点,使得,若存在,请求出点的坐标;若不存在,请说明理由。
如图,等边△ABC中,点E、F分别是AB、AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ、EF。
(1)若等边的边长为20,且,求等边的边长;
(2)求证:。
如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限内交于点,与轴交于点,与轴交于点,。
(1)求一次函数和反比例函数的解析式;
(2)若在轴上存在点,使得,求点的坐标。