已知反比例函数y=(x>0)的图象经过点A(2,a)(a>0),过点A作AB⊥x轴,垂足为点B,将线段AB沿x轴正方向平移,与反比例函数y=(x>0)的图象相交于点F(p,q).
(1)当F点恰好为线段的中点时,求直线AF的解析式 (用含a的代数式表示);
(2)若直线AF分别与x轴、y轴交于点M、N,当q=-a2+5a时,令S=S△ANO+S△MFO(其中O是原点),求S的取值范围.
如图,BC是半圆O的直径,点A在半圆O上,点D是AC的中点,点E在上运动.若AB=2,tan∠ACB=,请问:分别以点A、E、D为直角顶点的等腰三角形AED存在吗?请逐一说明理由.
如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,垂足分别为点E、F.请判断AP与EF的数量关系,并证明你的判断.
用一条长40cm的绳子能否围成一个面积为110cm2的矩形?如能,说明围法;如果不能,说明理由.
如图,点E为平行四边形ABCD中DC延长线上的一点,且CE=DC.连结AE,分别交BC、BD于点F、G.若BD=6,求DG的长.
袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.
(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;
(2)这个游戏规则对双方公平吗?请说明理由.