满分5 > 初中数学试题 >

如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作A...

如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.

(1)求证:∠BFC=∠BEA;

(2)求证:AM=BG+GM。

满分5 manfen5.com

 

 

(1)证明见解析;(2)证明见解析. 【解析】 试题分析:(1)根据正方形的四条边都相等,AB=BC,又BE=BF,所以△ABE和△CBF全等,再根据全等三角形对应角相等即可证出; (2)连接DG,根据正方形的性质,AB=AD,∠DAC=∠BAC=45°,AG是公共边,所以△ABG和△ADG全等,根据全等三角形对应边相等,BG=DG,对应角相等∠2=∠3,因为BG⊥AE,所以∠BAE+∠2=90°,而∠BAE+∠4=90°,所以∠2=∠4,因此∠3=∠4,根据GM⊥CF和(1)中全等三角形的对应角相等可以得到∠1=∠BFC=∠2,在△ADG中,∠DGC=∠3+45°,所以DGM三点共线,因此△ADM是等腰三角形,AM=DM=DG+GM,所以AM=BG+GM. (1)在正方形ABCD中,AB=BC,∠ABC=90°, 在△ABE和△CBF中, , ∴△ABE≌△CBF(SAS), ∴∠BFC=∠BEA; (2)连接DG, 在△ABG和△ADG中, , ∴△ABG≌△ADG(SAS), ∴BG=DG,∠2=∠3, ∵BG⊥AE, ∴∠BAE+∠2=90°, ∵∠BAD=∠BAE+∠4=90°, ∴∠2=∠3=∠4, ∵GM⊥CF, ∴∠BCF+∠1=90°, 又∠BCF+∠BFC=90°, ∴∠1=∠BFC=∠2, ∴∠1=∠3, 在△ADG中,∠DGC=∠3+45°, ∴∠DGC也是△CGH的外角, ∴D、G、M三点共线, ∵∠3=∠4(已证), ∴AM=DM, ∵DM=DG+GM=BG+GM, ∴AM=BG+GM. 考点:1.正方形的性质;2.全等三角形的判定与性质.  
复制答案
考点分析:
相关试题推荐

某梁平特产专卖店销售“梁平柚”,已知“梁平柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个。

(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?

(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?

 

查看答案

“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现万州人追梦的风采,我某校开展了以“梦想中国,逐梦万州”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:

等级

成绩(用s表示)

频数

频率

A

90≤s≤100

x

0.08

B

80≤s<90

35

y

C

s<80

11

0.22

合 计

 

50

1

 

请根据上表提供的信息,解答下列问题:

(1)表中的x的值为    ,y的值为     

(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率

 

查看答案

先化简,再求值:满分5 manfen5.com,其中x满足方程:x2+x﹣6=0

 

查看答案

如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点AB的坐标分别是A33)、B12),△AOB绕点O逆时针旋转90°后得到△满分5 manfen5.com.

1)画出△满分5 manfen5.com,直接写出点满分5 manfen5.com满分5 manfen5.com的坐标;

2)在旋转过程中,点B经过的路径的长;

3)求在旋转过程中,线段AB所扫过的面积.

满分5 manfen5.com

 

 

查看答案

计算:满分5 manfen5.com

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.