图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.
(1)请用两种不同的方法求图②中阴影部分的面积.
方法1:
方法2:
(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系. ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;
②已知:,求:的值.
完成下列证明:
如图,已知AD⊥BC,EF⊥BC,∠1=∠2.
求证:DG∥BA.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°( )
∴EF∥AD( )
∴∠1=∠BAD( )
又∵∠1=∠2(已知)
∴ (等量代换)
∴DG∥BA.( )
先化简,后求值:(x﹣3)2﹣(x+2)(x﹣2)﹣(x﹣2)(3﹣x),其中x=2.
计算:
(1)5a5•(﹣a)2﹣(﹣a2)3•(﹣2a)
(2)(2x2y)3•(﹣3xy2)÷(12x4y5)
如图,已知:AB∥DE,∠1=∠2,直线AE与DC平行吗?请说明理由.
计算:﹣32+|﹣3|+(﹣1)2016×(π﹣3)0﹣()﹣1.