以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.
(1)说明BD=CE;
(2)延长BD,交CE于点F,求∠BFC的度数;
(3)若如图2放置,上面的结论还成立吗?请简单说明理由.
某剧院的观众席的座位为扇形,且按下列分式设置:
排数(x) | 1 | 2 | 3 | 4 | … |
座位数(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的规律,当x每增加1时,y如何变化?
(2)写出座位数y与排数x之间的关系式;
(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.
暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每 200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.
(1)求他此时获得购物券的概率是多少?
(2)他获得哪种购物券的概率最大?请说明理由.
先化简,再求值:(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=2.
填空:如图,已知∠1=∠2,求证:a∥b
证明:∵∠1=∠2(已知)
∠2=∠3( )
∴∠1= ( )
∴a∥b( )
化简或计算
(1)(﹣a)3(a3)2
(2)(2a2b)3÷(ab)2
(3)(﹣2016)0+﹣()﹣1+()2
(4)(x+3y+2)(x﹣3y+2)