满分5 > 初中数学试题 >

如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1...

如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.

(1)当t=3时,求l的解析式;

(2)若点M,N位于l的异侧,确定t的取值范围;

(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.

 

(1)y=﹣x+4.(2)若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)当t=1时,落在y轴上,当t=2时,落在x轴上. 【解析】 试题分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式; (2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围; (3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值. 【解析】 (1)直线y=﹣x+b交y轴于点P(0,b), 由题意,得b>0,t≥0,b=1+t. 当t=3时,b=4, 故y=﹣x+4. (2)当直线y=﹣x+b过点M(3,2)时, 2=﹣3+b, 解得:b=5, 5=1+t, 解得t=4. 当直线y=﹣x+b过点N(4,4)时, 4=﹣4+b, 解得:b=8, 8=1+t, 解得t=7. 故若点M,N位于l的异侧,t的取值范围是:4<t<7. (3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点. 过点M作MD⊥x轴于点D,则OD=3,MD=2. 已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形, ∴DE=MD=2,OE=OF=1, ∴E(1,0),F(0,﹣1). ∵M(3,2),F(0,﹣1), ∴线段MF中点坐标为(,). 直线y=﹣x+b过点(,),则=﹣+b,解得:b=2, 2=1+t, 解得t=1. ∵M(3,2),E(1,0), ∴线段ME中点坐标为(2,1). 直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3, 3=1+t, 解得t=2. 故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.  
复制答案
考点分析:
相关试题推荐

在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.

(1)求甲、乙两工程队每天能完成绿化的面积.

(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.

(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.

 

查看答案

我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:

(1)将条形统计图补充完整;

(2)扇形图中的“1.5小时”部分圆心角是多少度?

(3)求抽查的学生劳动时间的众数、中位数.

 

查看答案

如图,已知BD是矩形ABCD的对角线.

(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).

(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.

 

查看答案

在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.

(1)求a的值;

(2)设这条直线与y轴相交于点D,求OPD的面积.

 

查看答案

如图,滑杆在机械槽内运动,ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.