下列运算正确的是( )
A.a3+a3=2a6 B.(x2)3=x5 C.2a6÷a3=2a2 D.x3•x2=x5
下列实数中,是有理数的为( )
A. B. C.π D.0
如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).
(1)点E的坐标为 ,F的坐标为 ;
(2)当t为何值时,四边形POFE是平行四边形;
(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.
“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段 | x | 还车数 (辆) | 借车数 (辆) | 存量y (辆) |
6:00﹣7:00 | 1 | 45 | 5 | 100 |
7:00﹣8:00 | 2 | 43 | 11 | n |
… | … | … | … | … |
根据所给图表信息,解决下列问题:
(1)m= ,解释m的实际意义: ;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.
如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.
(1)求点D的坐标及BD长;
(2)求一次函数与反比例函数的解析式;
(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;
(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.
如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.
(1)求证:DC为⊙O切线;
(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.