如图1,函数y=﹣x+4的图象与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称.
(1)填空:m= ;
(2)点P在平面上,若以A、M、N、P为顶点的四边形是平行四边形,直接写出点P的坐标;
(3)如图2,反比例函数的图象经过N、E(x1,y1)、F(x2,y2)三点.且x1>x2,点E、F关于原点对称,若点E到直线MN的距离是点F到直线MN的距离的3倍,求E、F两点的坐标.
如图,在矩形OABC中,点A、C的坐标分别为(10,0),(0,2),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+m交线段OA于点E.
(1)矩形OABC的周长是 ;
(2)连结OD,当OD=DE时,求m的值;
(3)若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC重叠部分的面积是否会随着E点位置的变化而变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
如图,直线y=﹣x+b与反比例函数的图象相交于点A(a,3),且与x轴相交于点B.
(1)求a、b的值;
(2)若点P在x轴上,且△AOP的面积是△AOB的面积的,求点P的坐标.
如图是一辆汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数图象.
(1)汽车在DE段行驶了 小时;
(2)汽车在BC段停留了 小时;
(3)汽车出发1小时时,离出发地多少千米?
如图,在菱形ABCD中,BD=AB,求这个菱形的各个内角的度数.