已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:
(1)△BFC≌△DFC;
(2)AD=DE.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
(1)计算 .
(2)先化简后求值:当时,求代数式的值.
如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、En,分别记△BCE1、△BCE2、△BCE3…△BCEn的面积为S1、S2、S3、…Sn.则Sn= S△ABC(用含n的代数式表示).
如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=-x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为 .
如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是 .