如图,已知∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,分别连接A1B2,连接A2B3….若OA1=a,从左往右的阴影面积依次记作S1、S2、S3…Sn.则Sn= .
如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是 .
如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为 .
如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为 .
某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:
摸球的次数 | 100 | 200 | 300 | 400 | 500 | 600 |
摸到白球的次数 | 58 | 118 | 189 | 237 | 302 | 359 |
摸到白球的频率 | 0.58 | 0.59 | 0.63 | 0.593 | 0.604 | 0.598 |
从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)
计算:-22-2cos60°+|-|+(3.14-π)0= .