如图,操场上有一根旗杆AH,为测量它的高度,在点B和点D处各立一根高1.5米的标杆BC、DE,且BD=30米,测得视线AC与地面HG的交点为F,视线AE与地面HG的交点为G,且H、B、F、D、G都在同一直线上,测得BF=3米,DG=5米,求旗杆AH的高度.
如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且.
(1)试问:∠BAE与∠CAD相等吗?为什么?
(2)判断△ABE与△ACD是否相似?并说明理由.
已知二次函数y=x2-(2m+1)x+(m2-1).
(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;
(2)若该二次函数图象经过点(2m-2,-2m-1),求该二次函数的表达式.
已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(-1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+2时x的取值范围.
如图,△ABC中,∠A=30°,∠B=45°,AC=4,求AB的长.
一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.
(1)请用画树状图或列表的方法列出所有可能出现的结果;
(2)求两次摸到“一只白球、一只红球”的概率.