满分5 > 初中数学试题 >

【发现证明】 如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=4...

【发现证明】

如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,试判断BEEFFD之间的数量关系.

小聪把ABE绕点A逆时针旋转90°ADG,通过证明AEF≌△AGF;从而发现并证明了EF=BE+FD

【类比引申】

1)如图2,点EF分别在正方形ABCD的边CBCD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EFBEDF之间的数量关系,并证明;

【联想拓展】

2)如图3,如图,∠BAC=90°AB=AC,点EF在边BC上,且∠EAF=45°,若BE=3EF=5,求CF的长.

 

(1)DF=EF+BE.理由见解析;(2)CF=4. 【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案; (2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF. 【解析】 (1)DF=EF+BE.理由:如图1所示, ∵AB=AD, ∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合, ∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD, ∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°, ∵∠EAF=45°,∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠GAF, 在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE; (2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2, ∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°, ∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2; 又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°, 在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG, ∴CF2=EF2﹣BE2=52﹣32=16,∴CF=4. “点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.  
复制答案
考点分析:
相关试题推荐

已知,在RtOAB中,OAB=90°,BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将RtOAB沿OB折叠后,点A落在第一象限内的点C处.

(1)求点C的坐标;

(2)若抛物线经过C、A两点,求此抛物线的解析式;

(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

 

查看答案

初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.

小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)

 

查看答案

如图,一次函数y=﹣x+5的图象与反比例函数y=kx-1k≠0)在第一象限的图象交于A1n)和B两点.

1)求反比例函数的解析式与点B坐标;

2)求AOB的面积;

3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=kx-1k≠0)的值时,写出自变量x的取值范围.

 

查看答案

如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45

(1)试判断CD与⊙O的位置关系,并证明你的结论;

(2)若⊙O的半径为3,sin∠ADE=,求AE的值.

 

查看答案

如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;

(2)求MCB的面积SMCB

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.