满分5 > 初中数学试题 >

六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与...

六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.

(1)求S1和S3的值;

(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;

(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?

 

(1);(2);(3)17. 【解析】试题分析:(1)矩形ADOG、矩形BEOH、矩形CFOI的面积相等列方程组求解即可. (2)由道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积相等列式可得. (3)把区域MPOQN内满足条件的点一一列出即可求解. 试题解析:【解析】 (1)∵矩形ADOG、矩形BEOH、矩形CFOI的面积相等,且OG=GH=HI, ∴. 又∵S2=6,∴,解得. (2)∵点T是弯道MN上的任一点, ∴根据弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积相等得. ∴y关于x的函数关系式为. (3)∵MP=2,NQ=3, ∴当x=2时,y=18;当y=3时,x=12. ∵横坐标、纵坐标都是偶数,∴当x=4,6,8,10时,y=9,6, . ∴区域MPOQN内满足条件的点为(2,2),(2,4),(2,6),(2,8),(2,10),(2,12),(2,14),(2,16),(4,2),(4,4),(4,6),(4,8),(6,2),(6,4),(8,2),(8,4),(10,2),计17个. 考点:1.反比例函数综合题;2.由实际问题列函数关系式;3.曲线上点的坐标与方程的关系;4.点的坐标;5.分类思想和方程思想的应用.  
复制答案
考点分析:
相关试题推荐

已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.

(1)求四边形ABDC的面积.

(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?

(3)当A1与D不重合时:①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.

 

查看答案

如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.

(1)求一次函数的解析式;

(2)根据图象直接写出的x的取值范围;

(3)求△AOB的面积.

 

查看答案

如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.

(1)求证:MD和NE互相平分;

(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面积.

 

查看答案

小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:

(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;

(2)求图中t的值;

(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?

 

查看答案

已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.

(1)求证:四边形AODE是矩形;

(2)若AB=6,∠BCD=120°,求四边形AODE的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.