满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E. ...

如图,在△ABC中,AB=AC,以AC为直径的⊙OAB于点D,交BC于点E

1)求证:BE=CE

2)若BD=2BE=3,求AC的长.

 

(1)见解析;(2)AC=9 【解析】试题分析:(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE; (2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长. (1)证明:连结AE,如图, ∵AC为⊙O的直径, ∴∠AEC=90°, ∴AE⊥BC, 而AB=AC, ∴BE=CE; (2)连结DE,如图, ∵BE=CE=3, ∴BC=6, ∵∠BED=∠BAC, 而∠DBE=∠CBA, ∴△BED∽△BAC, ∴=,即=, ∴BA=9, ∴AC=BA=9. 【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.  
复制答案
考点分析:
相关试题推荐

萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:

(1)这次调查中,一共调查了      名学生,图1中C类所对应的圆心角度数为     

(2)请补全条形统计图;

(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.

 

查看答案

(2015秋•莒南县期末)在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)

(1)画出ABC关于直线l:x=﹣1的对称三角形A1B1C1;并写出A1、B1、C1的坐标.

(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为     

提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.

 

 

查看答案

(10) 如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.

 

 

查看答案

先化简,再求值:,再从0<x<4的范围内选取一个你最喜欢的值代入,求值.

 

查看答案

四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合)。若四边形OBCD是平行四边形时,那么的数量关系是________________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.