如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.
(1)求该抛物线的解析式;
(2)连接PB、PC,求△PBC的面积;
(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且=PE•PO.
(1)求证:PC是⊙O的切线.
(2)若OE:EA=1:2,PA=6,求⊙O的半径.
如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.
(1)求证:AE=CF;
(2)连结DB交CF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.
某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)九年级(1)班共有 名学生;
(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是 ;
(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.
在一个不透明的布袋里,装有4个标号为1,2,3,4的小球;它们大小、材质、形状完全相同,甲从布袋中任意摸出一个小球,记下数字为x,乙从剩下的球中任意摸出一个小球,记下数字为y,以此确定点M的坐标(x,y)。
(l)请你用画树状图或列表的方法,写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=的图象上的概率.
已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2):
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;
(3)如果点C与点A关于x轴对称,求△ABC的面积.