满分5 > 初中数学试题 >

若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y...

若抛物线L:y=ax2+bx+ca,b,c是常数,abc≠0与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.

(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;

(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;

(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.

 

(1)m的值为﹣1,n的值为1.(2)y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)≤S≤. 【解析】 试题分析:(1)确定直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)确定直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论. 试题解析:(1)令直线y=mx+1中x=0,则y=1, 即直线与y轴的交点为(0,1); 将(0,1)代入抛物线y=x2﹣2x+n中, 得n=1. ∵抛物线的解析式为y=x2﹣2x+1=(x﹣1)2, ∴抛物线的顶点坐标为(1,0). 将点(1,0)代入到直线y=mx+1中, 得:0=m+1,解得:m=﹣1. 答:m的值为﹣1,n的值为1. (2)将y=2x﹣4代入到y=中有, 2x﹣4=,即2x2﹣4x﹣6=0, 解得:x1=﹣1,x2=3. ∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2). 令“带线”l:y=2x﹣4中x=0,则y=﹣4, ∴“路线”L的图象过点(0,﹣4). 设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2, 由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2, 解得:m=2,n=﹣. ∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣(x﹣3)2+2. (3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k, 即该抛物线与y轴的交点为(0,k). 抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣,), 设“带线”l的解析式为y=px+k, ∵点(﹣,)在y=px+k上, ∴=﹣p+k, 解得:p=. ∴“带线”l的解析式为y=x+k. 令∴“带线”l:y=x+k中y=0,则0=x+k, 解得:x=﹣. 即“带线”l与x轴的交点为(﹣,0),与y轴的交点为(0,k). ∴“带线”l与x轴,y轴所围成的三角形面积S=|﹣|×|k|, ∵≤k≤2, ∴≤≤2, ∴S===, 当=1时,S有最大值,最大值为; 当=2时,S有最小值,最小值为. 故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为≤S≤. 考点:反比例函数与一次函数的交点问题;二次函数的应用.  
复制答案
考点分析:
相关试题推荐

直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角),得到Rt.

(1)如图,当边经过点B时,求旋转角的度数;

(2)在三角板旋转的过程中,边AB所在直线交于点D,过点 DDE边于点E,联结BE.

①当时,设AD=BE=,求之间的函数解析式及自变量 的取值范围;

②当时,求AD的长.

 

查看答案

10分)已知O为ABC的外接圆,圆心O在AB上.

(1)在图1中,用尺规作图作BAC的平分线AD交O于D(保留作图痕迹,不写作法与证明);

(2)如图2,设BAC的平分线AD交BC于E,O半径为5,AC=4,连接OD交BC于F.

求证:ODBC;

求EF的长.

 

查看答案

对于钝角α,定义它的三角函数值如下:

sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)

(1)求sin120°,cos120°,sin150°的值;

(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及A和B的大小.

 

查看答案

如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tanACO=2.

(1)求该反比例函数和一次函数的解析式;

(2)求点B的坐标.

 

 

查看答案

某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:

1)求图中的x的值;

2)求最喜欢乒乓球运动的学生人数;

3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.