某公司经过市场调查发现,该公司生产的某商品在第x天的售价(1≤x≤42)为(x+40)元/件,而该商品每天的销量满足关系式y=200-2x.如果该商品第20天的售价按7折出售,仍然可以获得40%的利润
(1) 求该公司生产每件商品的成本为多少元
(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?
(3) 试计算公司共有多少天利润不低于3600元?
如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=48,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=2,求⊙O的半径及sin∠ACE的值.
身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.
(1)求风筝距地面的高度GF;
(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根米长的竹竿能否触到挂在树上的风筝?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
已知:关于x的方程kx2-(3k-1)x+2(k-1)=0
(1)求证:无论k为何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且│x1-x2│=3,求k的值.
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽(咸)、豆沙馅粽(甜)、红枣馅粽(甜)、蛋黄馅粽(咸)(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有7000人,请估计爱吃A粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他吃到的两个粽子都是甜味的概率.
已知:如图,四边形ABCD中,AD∥BC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD,DB=DE。
(1)求证:四边形ACED是平行四边形;
(2)联结AE,交BD于点G,求证: .