下列图案中,是轴对称图形但不是中心对称图形的是
A. B. C. D.
已知抛物线C:y=(x+2)[t(x+1)-(x+3)],其中-7≤t≤-2,且无论t 取任何符合条件的实数,点A,P 都在抛物线C 上.
(1)当t=-5时,求抛物线C 的对称轴;
(2)当-60≤n≤-30 时,判断点(1,n)是否在抛物线C上, 并说明理由;
(3)如图,若点A在x轴上,过点A作线段AP的垂线交y轴于点B,交抛物线C于点D,当点D的纵坐标为m+时,求S△PAD的最小值.
已知AB是半圆O的直径,点C在半圆O上.
(1)如图1,若AC=3,∠CAB=30°,求半圆O的半径;
(2)如图2,M是的中点,E是直径AB上一点,AM分别交CE,BC于点F,D. 过点F作FG∥AB交边BC于点G,若△ACE与△CEB相似,请探究以点D为圆心,GB长为半径的⊙D与直线AC的位置关系,并说明理由.
为节约能源,某市众多车主响应号召,将燃油汽车改装为天然气汽车.某日上午7:00-8:00, 燃气公司给该城西加气站的储气罐加气,8:00 加气站开始为前来的车辆加气. 储气罐内的天然气总量y(立方米)随加气时间x(时)的变化而变化.
(1)在7:00-8:00 范围内,y 随x的变化情况如图13 所示,求y 关于x 的函数解析式;
(2)在8:00-12:00 范围内,y 的变化情况如下表所示,请写出一个符合表格中数据的y 关于x 的函数解析式,依此函数解析式,判断上午9:05 到9:20 能否完成加气950 立方米的任务,并说明理由.
如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.
(1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;
(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.
如图,在△ABC 中,点D 在B C 边上,BD=AD=AC,AC 平分∠DAE.
(1)设∠DAC=x°,将△ADC 绕点A 逆时针旋转x°,用直尺和圆规在图中画出旋转后的三角形,记点C 的对应点为C′;(保留作图痕迹)
(2)在(1)的条件下,若∠B=30°,证明四边形ADCC′是菱形.