已知抛物线经过点A(-3, 0),F(8, 0),B(0, 4)三点.
(1)求抛物线解析式及对称轴.
(2)若点D在线段FB上运动(不与F,B重合),过点D作DC⊥轴于点C(x, 0),将△FCD沿CD向左翻折,点B对应点为点E, △CDE与△FBO重叠部分面积为S.
①试求出S与x之间的函数关系式,并写出自变量取值范围.
②是否存在这样的点C,使得△BDE为直角三角形,若存在,求出C点坐标,若不存在,请说明理由;
(3)抛物线对称轴上有一点M,平面内有一点N,若以A,B,M,N四点组成的四边形为菱形,求点N的坐标;
为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.王华按照相关政策投资销售本市生产的一种品牌衬衫.已知这种品牌衬衫的成本价为每件100元,出厂价为每件120元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-2x+500.
(1)王华在开始创业的第1个月将销售单价定为150元,那么政府这个月为他承担的总差价为多少元?
(2)设王华获得的利润为w(元),当销售单价为多少元时,每月可获得最大利润?
(3)物价部门规定,这种品牌衬衫的销售单价不得高于170元.如果王华想要每月获得的利润不低于10450元,那么政府每个月为他承担的总差价最少为多少元?
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数(k>0,x>0)的图象上,点D的坐标为(,2).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数(k>0,x>0)的图象上时,求菱形ABCD平移的距离;
如图,AB是⊙O的直径, AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP 、AF.
求证:(1)AF∥BE;(2)△ACP ∽△FCA.
校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)
某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.
(1)求第一批套尺购进时单价是多少?
(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?