计算的结果是( )
A. B. C. D.
-2的相反数是( )
A. -2 B. 2 C. ±2 D.
在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P关于⊙C的“视角”.
(1)如图,⊙O的半径为1,
①已知点A(0,2),画出点A关于⊙O的“视角”;
若点P在直线x = 2上,则点P关于⊙O的最大“视角”的度数 ;
②在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标;
③若点P在直线上,且点P关于⊙O的“视角”大于60°,求点P的横坐标的取值范围.
(2)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标的取值范围.
如图,在正方形ABCD中,E为AB边上一点,连接DE,将△ADE绕点D逆时针旋转90°得到△CDF,作点F关于CD的对称点,记为点G,连接DG.
(1)依题意在图1中补全图形;
(2)连接BD,EG,判断BD与EG的位置关系并在图2中加以证明;
(3)当点E为线段AB的中点时,直接写出∠EDG的正切值.
在平面直角坐标系xOy中,抛物线与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,B的坐标及抛物线的对称轴;
(2)过点B的直线l与y轴交于点C,且,直接写出直线l的表达式;
(3)如果点和点在函数的图象上,PQ=2a且, 求的值.
有这样一个问题:探究函数的图象与性质,小静根据学习函数的经验,对函数的图象与性质进行了探究,下面是小静的探究过程,请补充完整:
(1)函数的自变量x的取值范围是__________;
(2)下表是y与x的几组对应值.
… | -1 | 0 | 1 | 3 | 4 | … | |||
… | 1 | 4 | m | 1 | … |
表中的m=__________;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
(4)结合函数图象,写出一条该函数图象的性质:______________________________.