满分5 > 初中数学试题 >

已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE...

已知:如图,在矩形ABCD中,对角线ACBD相交于点OECD中点,连结OE.过点CCFBD交线段OE的延长线于点F,连结DF.求证:

(1)ODE≌△FCE

(2)四边形ODFC是菱形.

 

(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等; (2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可. 试题解析:证明:(1)∵CF∥BD, ∴∠ODE=∠FCE, ∵E是CD中点, ∴CE=DE, 在△ODE和△FCE中, , ∴△ODE≌△FCE(ASA); (2)∵△ODE≌△FCE, ∴OD=FC, ∵CF∥BD, ∴四边形ODFC是平行四边形, 在矩形ABCD中,OC=OD, ∴四边形ODFC是菱形. 考点:1.矩形的性质;2.全等三角形的判定与性质;3.菱形的判定.  
复制答案
考点分析:
相关试题推荐

如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AEDC的交点为O,连接DE

(1)求证:ADE≌△CED

(2)求证:DEAC

 

查看答案

如图,EF是四边形ABCD的对角线AC上两点,AF=CEDF=BEDFBE

求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.

 

查看答案

已知平行四边形ABCD中,CE平分∠BCD且交AD于点EA FCE,且交BC于点F

(1)求证:ABF≌△CDE

(2)如图,若∠1=65°,求∠B的大小.

 

查看答案

为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:

(1)此次共调查了多少人?

(2)求文学社团在扇形统计图中所占圆心角的度数;

(3)请将条形统计图补充完整;

(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?

 

查看答案

在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据

摸球的次数

100

150

200

500

800

1000

摸到白球的次数

58

96

116

295

484

601

摸到白球的频率

0.58

0.64

0.58

0.59

0.605

0.601

 

(1)请你估计,当n很大时,摸到白球的频率将会接近       (精确到0.1).

(2)假如你去摸一次,你摸到白球的概率是       ,摸到黑球的概率是      

(3)试估算口袋中黑、白两种颜色的球有多少只.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.