一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( )
A. B. C. D.
二元一次方程5x-11y=21 ( )
A. 只有一组解 B. 只有两组解 C. 无解 D. 有无数组解
下列方程组中,属于二元一次方程组的是 ( )
A. B. C. D.
已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA= ;
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA= ;
(3)将(2)中的“∠OBA=42°”改为“∠OBA=”,其它条件不变,求∠OGA的度数.(用含的代数式表示)
(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO=(30°<<90°) ,求∠OGA的度数.(用含的代数式表示)
某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
该商场计划购进两种教学设备若干台,共需66万元,全部销售后可获毛利润9万元.
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少台?
(2)通过市场调研,该商场决定在原计划的基础上,减少A型设备的购进数量,增加B型设备的购进数量,已知B型设备增加的数量是A型设备减少数量的1.5倍.若用于购进这两种型号教学设备的总资金不超过68.7万元,问A型设备购进数量至多减少多少台?
如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于点F,∠1+∠2=90°.试问直线AB,CD在位置上有什么关系?∠2与∠3在数量上有什么关系?并证明你的猜想.