满分5 > 初中数学试题 >

如图在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P、Q同时从点A出...

如图在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.

(1)求证:直线AB是⊙Q的切线;

(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M,若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);

(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切,若存在,请直接写出此时点C的坐标,若不存在,请说明理由.

 

(1)证明见解析(2)m=4﹣t 或m=4﹣t(3)存在,(﹣,0)或(,0)或(﹣,0)或(,0) 【解析】 试题分析:(1)只要证明△PAQ∽△BAO,即可推出∠APQ=∠AOB=90°,推出QP⊥AB,推出AB是⊙O的切线; (2)分两种情形求解即可:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.分别列出方程即可解决问题. (3)分两种情形讨论即可,一共有四个点满足条件. 试题解析:(1)如图1中,连接QP. 在Rt△AOB中,OA=4,OB=3, ∴AB==5, ∵AP=4t,AQ=5t, ∴, ∵∠PAQ=∠BAO, ∴△PAQ∽△BAO, ∴∠APQ=∠AOB=90°, ∴QP⊥AB, ∴AB是⊙O的切线. (2)①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形. 易知PQ=DQ=3t,CQ=•3t=, ∵OC+CQ+AQ=4, ∴m+t+5t=4, ∴m=4﹣t. ②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形. ∵OC+AQ﹣CQ=4, ∴m+5t﹣t=4, ∴m=4﹣t. (3)存在.理由如下: 如图4中,当⊙Q在y则的右侧与y轴相切时,3t+5t=4,t= , 由(2)可知,m=﹣或. 如图5中,当⊙Q在y则的左侧与y轴相切时,5t﹣3t=4,t=2, 由(2)可知,m=﹣或. 综上所述,满足条件的点C的坐标为(﹣,0)或(,0)或(﹣,0)或(,0). 考点:一次函数综合题  
复制答案
考点分析:
相关试题推荐

荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:

,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:

(1)求日销售量与时间t的函数关系式?

(2)哪一天的日销售利润最大?最大利润是多少?

(3)该养殖户有多少天日销售利润不低于2400元?

(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求m的取值范围.

 

查看答案

已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).

(1)求证无论k为何值,方程总有两个不相等实数根;

(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求的取值范围;

(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.

 

查看答案

如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°,cos37°,tan37°.计算结果保留根号)

 

查看答案

某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.

请根据图中的信息解答下列问题

(1)补全条形统计图

(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;

(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.

 

查看答案

如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.

(1)求证:△ACD≌△EDC;

(2)请探究△BDE的形状,并说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.