满分5 > 初中数学试题 >

下列实数中,无理数为( ) A.0.2 B. C. D.2

下列实数中,无理数为( 

A.0.2 B.  C.  D.2

 

C. 【解析】 试题分析:有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定只有是无理数,故选C. 考点:无理数  
复制答案
考点分析:
相关试题推荐

如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+

(1)求该抛物线的函数关系式与C点坐标;

(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?

(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);

i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;

ii:试求出此旋转过程中,(NA+NB)的最小值.

 

查看答案

边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.

(1)连接CQ,证明:CQ=AP;

(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;

(3)猜想PF与EQ的数量关系,并证明你的结论.

 

查看答案

为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:

问题1:单价

该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?

问题2:投放方式

该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放 辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.

 

查看答案

如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.

(1)求证:四边形ACBP是菱形;

(2)若⊙O半径为1,求菱形ACBP的面积.

 

查看答案

贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:

(1)本次参与调查的人数有  人;

(2)关注城市医疗信息的有  人,并补全条形统计图;

(3)扇形统计图中,D部分的圆心角是  度;

(4)说一条你从统计图中获取的信息.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.