如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足
(1)求A、B两点的坐标;
(2)C为OA的中点,作点C关于y轴的对称点D,以BD为直角边在第二象限作等腰Rt△BDE,过点E作EF⊥x轴于点F.若直线y=kx-4k将四边形OBEF分为面积相等的两部分,求k的值;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.
将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(,0),点D(,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当时,点B的坐标为________,点E的坐标为_________;
(2)随着的变化,试探索:点能否恰好落在轴上?若能, 请求出的值;若不能,请说明理由.
(3)如右图,若点E的纵坐标为1,且点(, )落在△ADE 的内部,求的取值范围.
如图,在等腰直角三角形ABC中,∠BAC=90°,P是△ABC内一点,PA=1,PB=3,PC=.求∠CPA的度数.
如图, 已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F. 试说明:(1)△ABP≌△AEQ;(2)EF=BF
如图所示,△ABC中点D在边AC上,DB=BC,E是CD的中点,F是AB的中点. 求证:EF=AB.
在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连结OA,作如下探究:
探究一:平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),请在图1中作出BC,点C的坐标是_________;
探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D.则点D的坐标是_______.
(2) 已知四点O(0,0),A (a,b), C,B(c,d),顺次连结O,A,C,B.
若所得到的四边形是正方形,请直接写出a,b,c,d应满足的关系式是________.