在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案。
(1)同学们都认为小华的方案是正确的,但对小芳方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由;
(2)你还有其他的设计方案吗?请在图1-3中画出你所设计的草图,将花园部分涂上阴影,并加以说明.
如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
实践操作:如图,是直角三角形,,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
(1)作的平分线,交BC于点O;
(2)综合运用:在你所作的图中,AB与的位置关系是什么?并写出证明过程。
如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O、 B两点.
(1)求此抛物线的解析式.
(2)求△AOB的面积 .
(3)若抛物线上另有点P满足S△POB=S△AOB,请求出P坐标.
(1)2(x+2)2-8=0; (2)x(x-3)=x;(3)(x+3)2+3(x+3)-4=0.
如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为_______。