数轴上表示的点与表示的点之间的距离为( ).
A. B. C. D.
如图,抛物线y=x2﹣(m+2)x+3(m﹣1)与x轴的两个交点为A、B,与y轴交于点C,点D为抛物线的顶点,直线y=﹣2x+m+6经过点B,交y轴于点E(0,6).
(1)求直线和抛物线的解析式;
(2)如果抛物线的对称轴与线段BC交于点H,且直线y=x与直线y=﹣2x+m+6交于点G,求证:四边形OHBG是平行四边形;
(3)在抛物线上是否存在点P,使△APB的面积等于平行四边形OHBG的面积,若存在,直接写出P点的坐标,若不存在请说明理由.
如图①,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系;
(2)①将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
②若AB=2,CE=2,在图②的基础上将△CED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.
由于数学课上需要用到科学计算器,班级决定集体购买,班长小明先去文具店购买了2个A型计算器和3个B型计算器,共花费90元;后又买了1个A型计算器和2个B型计算器,共花费55元(每次两种计算器的售价都不变)
(1)求A型计算器和B型计算器的售价分别是每个多少元?
(2)经统计,班内还需购买两种计算器共40个,设购买A型计算器t个,所需总费用w元,请求出w关于t的函数关系式;
(3)要求:B型计算器的数量不少于A型计数器的2倍,请设计一种购买方案,使所需总费用最低.
如图,直线AB交x轴于点A(4,0),交y轴于点B,交反比例函数y=(k≠0)于点P(第一象限),若点P的纵坐标为2,且tan∠BAO=1
(1)求出反比例函数y=(k≠0)的解析式;
(2)过线段AB上一点C作x轴的垂线,交反比例函数y=(k≠0)于点D,连接PD,当△CDP为等腰三角形时,求点C的坐标.
如图所示,某教学活动小组选定测量山顶铁塔AE的高,他们在30m高的楼CD的底部点D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.若小山高BE=62m,楼的底部D与山脚在同一水平面上,求铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)