满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1...

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度;

(2)当△DEG与△ACB相似时,求t的值.

 

(1)当t=1时,AD=AB,AE=1; (2)当t=或 或 或 时,△DEG与△ACB相似. 【解析】试题分析:(1)根据勾股定理得出AB=5,要使AD=AB=5,∵动点D每秒5个单位的速度运动,∴t=1;(2)当△DEG与△ACB相似时,要分两种情况讨论,根据相似三角形的性质,列出比例式,求出DE的表达式时,要分AD<AE和AD>AE两种情况讨论. 试题解析: (1)∵∠ACB=90°,AC=3,BC=4, ∴AB==5. ∵AD=5t,CE=3t, ∴当AD=AB时,5t=5,即t=1; ∴AE=AC+CE=3+3t=6,DE=6﹣5=1. (2)∵EF=BC=4,G是EF的中点, ∴GE=2. 当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t, 若△DEG与△ACB相似,则或 , ∴或, ∴t=或t=; 当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3, 若△DEG与△ACB相似,则或 , ∴或, 解得t=或t=; 综上所述,当t=或 或 或 时,△DEG与△ACB相似. 点睛:本题第一问比较简单,第二问的讨论较多,关键是要理清头绪,相似三角形的讨论,和线段的大小的选择,做题时要分清,分细.  
复制答案
考点分析:
相关试题推荐

如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,

(1)求反比例函数解析式;

(2)求C点坐标.

 

查看答案

如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.

(1)求证:△BDE∽△CEF;

(2)当点E移动到BC的中点时,求证:FE平分∠DFC.

 

查看答案

已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.

 

查看答案

如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.

 

查看答案

如图,四边形ABCD是菱形,点G是BC延长线上一点,连结AG,分别交BD、CD于点E、F,连结CE.

(1)求证:∠DAE=∠DCE;

(2)当CE=2EF时,EG与EF的等量关系是     

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.