满分5 > 初中数学试题 >

如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物...

如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).

(1)求抛物线的解析式及顶点B的坐标;

(2)求证:CB是△ABE外接圆的切线;

(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;

(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

 

(1)y=-x2+2x+3.点B(1,4).(2)证明见解析;(3)P1(0,0),P2(9,0),P3(0,-).(4)s=. 【解析】试题分析:(1)已知A、D、E三点的坐标,利用待定系数法可确定抛物线的解析式,进而能得到顶点B的坐标. (2)过B作BM⊥y轴于M,由A、B、E三点坐标,可判断出△BME、△AOE都为等腰直角三角形,易证得∠BEA=90°,即△ABE是直角三角形,而AB是△ABE外接圆的直径,因此只需证明AB与CB垂直即可.BE、AE长易得,能求出tan∠BAE的值,结合tan∠CBE的值,可得到∠CBE=∠BAE,由此证得∠CBA=∠CBE+∠ABE=∠BAE+∠ABE=90°,此题得证. (3)△ABE中,∠AEB=90°,tan∠BAE=,即AE=3BE,若以D、E、P为顶点的三角形与△ABE相似,那么该三角形必须满足两个条件:①有一个角是直角、②两直角边满足1:3的比例关系;然后分情况进行求解即可. (4)过E作EF∥x轴交AB于F,当E点运动在EF之间时,△AOE与△ABE重叠部分是个四边形;当E点运动到F点右侧时,△AOE与△ABE重叠部分是个三角形.按上述两种情况按图形之间的和差关系进行求解. 试题解析:(1)由题意,设抛物线解析式为y=a(x-3)(x+1). 将E(0,3)代入上式,解得:a=-1. ∴y=-x2+2x+3. 则点B(1,4). (2)如图1,过点B作BM⊥y于点M,则M(0,4). 在Rt△AOE中,OA=OE=3, ∴∠1=∠2=45°,AE=. 在Rt△EMB中,EM=OM-OE=1=BM, ∴∠MEB=∠MBE=45°,BE=. ∴∠BEA=180°-∠1-∠MEB=90°. ∴AB是△ABE外接圆的直径. 在Rt△ABE中,tan∠BAE==tan∠CBE, ∴∠BAE=∠CBE. 在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°. ∴∠CBA=90°,即CB⊥AB. ∴CB是△ABE外接圆的切线. (3)Rt△ABE中,∠AEB=90°,tan∠BAE=,sin∠BAE=,cos∠BAE=; 若以D、E、P为顶点的三角形与△ABE相似,则△DEP必为直角三角形; ①DE为斜边时,P1在x轴上,此时P1与O重合; 由D(-1,0)、E(0,3),得OD=1、OE=3,即tan∠DEO==tan∠BAE,即∠DEO=∠BAE 满足△DEO∽△BAE的条件,因此 O点是符合条件的P1点,坐标为(0,0). ②DE为短直角边时,P2在x轴上; 若以D、E、P为顶点的三角形与△ABE相似,则∠DEP2=∠AEB=90°,sin∠DP2E=sin∠BAE=; 而DE=,则DP2=DE÷sin∠DP2E==10,OP2=DP2-OD=9 即:P2(9,0); ③DE为长直角边时,点P3在y轴上; 若以D、E、P为顶点的三角形与△ABE相似,则∠EDP3=∠AEB=90°,cos∠DEP3=cos∠BAE=; 则EP3=DE÷cos∠DEP3=,OP3=EP3-OE=; 综上,得:P1(0,0),P2(9,0),P3(0,-). (4)设直线AB的解析式为y=kx+b. 将A(3,0),B(1,4)代入,得,解得. ∴y=-2x+6. 过点E作射线EF∥x轴交AB于点F,当y=3时,得x=, ∴F(,3). 情况一:如图2,当0<t≤时,设△AOE平移到△GNM的位置,MG交AB于点H,MN交AE于点S. 则ON=AG=t,过点H作LK⊥x轴于点K,交EF于点L. 由△AHG∽△FHM,得,即 解得HK=2t. ∴S阴=S△MNG-S△SNA-S△HAG=×3×3-(3-t)2-t2t=-t2+3t. 情况二:如图3,当<t≤3时,设△AOE平移到△PQR的位置,PQ交AB于点I,交AE于点V. 由△IQA∽△IPF,得.即, 解得IQ=2(3-t). ∵AQ=VQ=3-t, ∴S阴=IVAQ=(3-t)2=t2-3t+. 综上所述:s=. 考点:二次函数综合题.  
复制答案
考点分析:
相关试题推荐

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=     ,PD=     

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

 

查看答案

如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.

(1)∠ACB=     °,理由是:     

(2)猜想△EAD的形状,并证明你的猜想;

(3)若AB=8,AD=6,求BD.

 

查看答案

如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).

(1)求直线AB的解析式;

(2)若直线AB上的点C在第一象限,且S△BOC=2,求经过点C的反比例函数的解析式.

 

查看答案

随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

 

查看答案

某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛).

游戏规则如下:在两个不透明的盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两个球都是白球,乙胜,否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.

根据上述规则回答下列问题:

(1)从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?

(2)该游戏公平吗?请用列表或树状图等方法说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.