已知⊙O1与⊙O2的圆心距O1O2=6cm,且两圆的半径满足一元二次方程x2-6x+8=0,则两圆的位置关系为 ( )
A. 外切 B. 内切 C. 外离 D. 相交
若方程
是关于
的一元二次方程,则方程( )
A. 无实数根 B. 有两个相等的实数根
C. 有两个不相等的实数根 D. 有一个根
如下图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( )

A. 15° B. 20° C. 25° D. 30°
用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )
A. (x+1)2=6 B. (x+2)2=9 C. (x﹣1)2=6 D. (x﹣2)2=9
下列四个图形中,不是中心对称图形的是( )
A.
B.
C.
D. 
阅读资料:小明是一个爱动脑筋的好学生,他在学习了有关圆的切线性质后,意犹未尽,又查阅到了与圆的切线相关的一个问题:
如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.
因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠1=∠2.
又因为∠B=∠1,所以∠B=∠2.
在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以
,即PC2=PA•PB.
问题拓展:
(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PA•PB,还成立吗?请证明你的结论;
综合应用:
(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;
(1)当AB=PA,且PC=12时,求PA的值;
(2)D是BC的中点,PD交AC于点E.求证:
.

