-2的相反数是( )
A. 2 B. -2 C. D. -
如图,正方形ABCD的边长为8cm,分别过四个顶点A、B、C、D做四条直线EF、FG、GH、HE,并保证相邻两条直线垂直,相交于E、F、G、H四点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断无论如何按照上述要求作图,线段EG、AC的中点是否重合,并说明理由;
(3)判断四边形EFGH的面积有无最大值,若有请写出面积最大值,并说明理由.
某地充分利用当地地理优势,大力发展山村特色旅游,为推介宣传,现制作两种宣传手提袋,已知同样用6m材料制成甲种的个数比制成乙种的个数少2个,且制成一个甲种比制成一个乙种需要多用20%的材料.
(1)求制作每个甲种、乙种各用多少米材料?
(2)如果制作甲、乙两种手提袋共3000个,且甲种的数量不少于乙种数量的2倍,那么请写出所需要材料的总长度l(m)与甲种数量n(个)之间的函数关系式,并求出最少需要多少米材料?
如图,在梯形ABCD中,AD∥BC,DE=CE,连接AE、BE, BE⊥AE,延长AE交 BC的延长线于点F.求证:△ABF是等腰三角形.
如图,在△ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE.
(1)图中的平行四边形有哪几个?请说明理由;
(2)若△AEF的面积是3,求四边形BCFD的面积.
如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.
(1)在网格中画出△A1B1C1和△A1B2C2;
(2)计算线段AC从开始变换到A1 C2的过程中扫过区域的面积(重叠部分不重复计算)