如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=( )
A. 64° B. 58° C. 72° D. 55°
下列说法不一定成立的是( )
A. 若a>b,则a+c>b+c B. 若a+c>b+c,则a>b
C. 若a>b,则ac2>bc2 D. 若ac2>bc2,则a>b
的算术平方根是( )
A. 2 B. ﹣2 C. D. ±
已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题
(1)请直接写出a、b、c的值.a= ,b= ,c=
(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
用火柴棒按下列方式搭建三角形:
(1)填表:
三角形个数 | 1 | 2 | 3 | 4 |
图火柴棒根数 | 3 |
|
|
|
(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);
(3)当有2017根火柴棒时,照这样可以摆多少个三角形?
某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.
(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.
(2)A景区与C景区之间的距离是多少?
(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.