下列代数式:m2,
,
,5,
,
中,分式的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,平面直角坐标系中,矩形 OABC 的 顶 点 A(0,3),C(- 1,0). 将 矩 形 OABC 绕原点顺时针旋转 900,得到矩形 OA’B’C’.解答下列问题:
(1)求出直线 BB’的函数解析式;
(2)直线 BB’与 x 轴交于点 M、与 y 轴交于点N,抛物线 y = ax2+ bx + c 的图象经过点C、M、N,求抛物线的函数解析式.
(3)将△MON 沿直线 MN 翻折,点 O 落在点P 处,请你判断点 P 是否在抛物线上,说明理由.

已知如图,点 C 在以 AB 为直径的⊙O 上,点 D 在 AB 的延长线上,∠BCD =∠A.
(1)求证:CD 为⊙O 的切线;
(2)过点 C 作 CE⊥AB 于点 E.若 CE = 2,cos D =
,求 AD 的长.

如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取
≈1.73,结果保留整数)

“母亲节”前夕,某商店根据市场调查,用 3000 元购进第一批盒装花,上市后很 快售完,接着又用 5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒 的进价是多少元?
某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演 门票,他们决定采用抽卡片的办法确定谁去.规则如下:
将正面分别标有数字 1、2、3、4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上 放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上, 再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和 为偶数,则小亮去.
(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现 的结果;
(2)你认为这个规则公平吗?请说明理由.
