如图1,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣a2关于y轴对称且有最小值﹣1.
(1)求抛物线C1的解析式;
(2)在图1中抛物线C1顶点为A,将抛物线C1绕 点B旋转180°后得到抛物线C2,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线与抛物线C2只有一个公共点,求直线l的解析式.
(3)如图2,先将抛物线 C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C3,设抛物线C3与直线y=x交于C、D两点,求线段CD的长.
某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)顾客一次性购买多少件时,该网店从中获利最多?
如图是由边长为1的小正三角形组成的网格图,点O和△ABC的顶点都在正三角形的格点上,将△ABC绕点O逆时针旋转120°得到△A′B′C′.
(1)在网格中画出旋转后的△A′B′C′;
(2)以O为原点AB所在直线为x轴建立坐标系直接写出A′、B′、C′三点的坐标.
如图,已知二次函数y=ax2+bx+3的图象过点A(﹣1,0),顶点坐标为(1,m).
(1)求该二次函数的关系式和m值;
(2)结合图象,解答下列问题:(直接写出答案)
①当x取什么值时,该函数的图象在x轴下方?
②当﹣1<x<2时,直接写出函数y的取值范围.
已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
如图:△ABC、△ECD都是等边三角形,且B、C、D在同一直线上.
(1)求证:BE=AD;
(2)△EBC可以看做是△DAC经过平移、轴对称或旋转得到,请说明得到△EBC的过程.