如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,E为AC上一点,AE=AB,连接DE.
(1)求证:△ABD≌△AED;
(2)已知BD=5,AB=9,求AC长.
如图所示,已知AB=DC,DB=AC.
(1)求证:∠ABD=∠DCA;
(2)在(1)的证明过程中需要作辅助线,它的意图是什么?
在数学课上,林老师在黑板上画出如图所示的△ABD和△ACE两个三角形,并写出四个条件:①AB=AC;②AD=AE;③∠1=∠2;④∠B=∠C.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.
题设:___________;结论:_______.(均填写序号)
证明:
如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组进行证明.
证明命题“全等三角形对应边上的高相等”是真命题.
【解析】
已知:如图,△ABC≌△EFG,AD,EH分别是△ABC和△EFG的对应边BC,FG上的高.
求证:AD=EH.
如图所示,已知AD是△ABC的中线,AB=8 cm,AC=5 cm,求△ABD和△ACD的周长差.