长度为下列四组数据的线段中,可以构成直角三角形的是( )
A. 1,2,3 B. 2,3,4 C. 3,4,5 D. 4,5,6
下列说法中,正确的有( )
①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.
A. 1个 B. 2个 C. 3个 D. 4个
如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求该抛物线的对称轴和线段AB的长;
(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;
(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
先阅读下列材料,然后解决后面的问题.
材料:一个三位数(百位数为a,十位数为b,个位数为c),若a+c=b,则称这个三整数为“协和数”,同时规定c=(k≠0),k称为“协和系数”,如264,因为它的百位上数字2与个位数字4之和等于十位上的数字6,所有264是“协和数”,则“协和数”k=2×4=8.
(1)对于“协和数”,求证:“协和数”能被11整除.
(2)已知有两个十位数相同的“协和数”,(a1>a2),且k1﹣k2=1,若y=k1+k2,用含b的式子表示y.
如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.
(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;
(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.
某商场销售两种型号的饮水机,八月份销售A种型号的饮水机150个和B种型号的饮水机200个.
(1)商场八月份销售饮水机时,A种型号的售价比B种型号的2倍少10元,总销售额为88500元,那么B种型号的饮水机的单价是每件多少元?
(2)为了提高销售量,商场九月份销售饮水机时,A种型号的售价比八月份A种型号售价下降了a%(a>0),且A种型号的销量比八月份A种型号的销量提高了a%;B种型号的售价比八月份的B种型号的售价下降了a%,但B种型号的销售量与八月份的销售量相同,结果九月份的总销售额也是88500元,求a的值.