一个三角形至少有( )
A. 一个锐角 B. 两个锐角 C. 一个钝角 D. 一个直角
有下列三个命题:
(1)两点之间线段最短
(2)平面内,过一点能且只能作一条直线与已知直线垂直
(3)过直线外一点有且只有一条直线与这条直线平行
其中真命题的个数是( )
A. 0个 B. 1个 C. 2个 D. 3个
阅读
(1)阅读理【解析】
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是________;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外取一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接ME.试判断ME与BC是否垂直,并说明理由.
已知:如图,AB=AE,∠B=∠E,BC=ED,AF⊥CD,求证:CF=DF.
如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.