已知一个口袋装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.
(1)求从中随机取出一个黑球的概率;
(2)若往口袋中再放入x个黑球,且从口袋中随机取出一个白球的概率是,求x的值.
已知:△ABC,∠A、∠B、∠C之和为多少?为什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
尺规作图(只用没有刻度的直尺和圆规,不必写作法,但要保留作图痕迹)已知∠a和线段a,作一个三角形,使其一个内角等于∠α,另一个内角等于2∠α,且这两个内角的夹边等于2a.
先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.
计算:(1)﹣12018+()﹣2﹣(3.14﹣π)0
(2)(2x3y)3•(﹣7xy2)÷(14x4y3)
如图a是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_______.