满分5 > 初中数学试题 >

已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的...

已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

(1)如图1,求证:KEGE

(2)如图2,连接CABG,若∠FGBACH,求证:CAFE

(3)如图3,在(2)的条件下,连接CGAB于点N,若sinEAK,求CN的长.

 

(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3). 【解析】 试题 (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE; (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF; (3)如下图2,作NP⊥AC于P, 由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH, 在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长. 试题解析: (1)如图1,连接OG. ∵EF切⊙O于G, ∴OG⊥EF, ∴∠AGO+∠AGE=90°, ∵CD⊥AB于H, ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG, ∴∠AGO=∠OAG, ∴∠AGE=∠AKH, ∵∠EKG=∠AKH, ∴∠EKG=∠AGE, ∴KE=GE. (2)设∠FGB=α, ∵AB是直径, ∴∠AGB=90°, ∴∠AGE=∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE﹣∠EKG=2α, ∵∠FGB=∠ACH, ∴∠ACH=2α, ∴∠ACH=∠E, ∴CA∥FE. (3)作NP⊥AC于P. ∵∠ACH=∠E, ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a, 则CH=,tan∠CAH=, ∵CA∥FE, ∴∠CAK=∠AGE, ∵∠AGE=∠AKH, ∴∠CAK=∠AKH, ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=, ∵AK=, ∴, ∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°, 在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG, ∵∠ACN=∠ABG, ∴∠AKH=∠ACN, ∴tan∠AKH=tan∠ACN=3, ∵NP⊥AC于P, ∴∠APN=∠CPN=90°, 在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b, 在Rt△CPN中,tan∠ACN==3, ∴CP=4b, ∴AC=AP+CP=13b, ∵AC=5, ∴13b=5, ∴b=, ∴CN===.  
复制答案
考点分析:
相关试题推荐

某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.

(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?

(2)设后来该商品每件降价x元,商场一天可获利润y元.求出yx之间的函数关系式,并求当x取何值时,商场获利润最大?

 

查看答案

一块直角三角形的木板,它的一条直角边AC长为1.5米,面积为1.5平方米.现在要把它加工成一个正方形桌面,甲、乙两人的加工方法分别如图(ⅰ)、(ⅱ)所示,记两个正方形面积分别为S1S2,请通过计算比较S1S2的大小.

 

查看答案

已知如图,ADCBDE均为等腰三角形,∠CAD=DBE,AC=AD,BD=BE,连接CE,点GCE的中点,过点EAC的平行线与线段AG延长线交于点F.

(1)当A,D,B三点在同一直线上时(如图1),求证:GAF的中点;

(2)将图1BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H在线段AF的延长线上,且EF=EH,连接AB,BH,试判断ABH的形状,并说明理由.

 

查看答案

小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).

1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是     

2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

3)从概率的角度分析,小明在第几题使用“求助”有利?(直接写出答案)

 

查看答案

如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.

(1)求一次函数y=kx+b的关系式;

(2)结合图象,直接写出满足kx+b>x的取值范围;

(3)若点Px轴上,且SACP=SBOC,求点P的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.