如图,二次函数y=ax2+bx+c 的图象与 x 轴交于 B、C 两点,交 y 轴于点 A.
(1)根据图象请用“>”、“<”或“=”填空:a 0,b 0,c 0;
(2)如果 OC=OA= OB,BC=3,求这个二次函数的解析式;
(3) 在(2)中抛物线的对称轴上,存在点 Q 使得△OQA 的周长最短,试求出点 Q 的坐标.
如图,在⊙O 中,AB 是直径,点 D 是⊙O 上一点,点 C 是弧 AD 的中点,CE⊥AB 于点 E,过点 D 的切线交 EC 的延长线于点 G,连接 AD,分别交 CE,CB 于点 P,Q,连接 AC.
(1)求证:GP=GD.
(2)下列结论:①∠BAD=∠ABC;②点 P 是△ACQ 的外心,其中正确结论是 .(只需填写序号).
如图,函数y=x的图象与函数y的图象相交于点P(1,m).
(1)求 m,k 的值.
(2)直线 y=2与函数y=x的图象相交于点A,与函数y的图象相交于点B,求线段 AB 长.
(3)直接写出不等式x的解集.
锐锐参加市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项)
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是__________.
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是__________.
(3)如果锐锐将每道题各用一次“求助”,请用画树状图或者列表的方法来分析他顺利通关的概率.
如图,在边长为 1 的小正方形格中,△AOB 的顶点均在格点上,
(1)请在平面直角坐标系中画出△AOB 绕原点O 逆时针旋转 90°后的图形△A1 O B1.
(2)求旋转过程中△AOB 扫过的图形的面积.
如图,在等腰 Rt△ABC 中,AC=BC=2,点 P 在以斜边 AB 为直径的半圆上,M 为 PC 的中点.当点 P 沿半圆从点A 运动至点 B 时,点 M 运动的路径长是_____.