满分5 > 初中数学试题 >

如图,梯形ABCD中,AB∥CD,AB=14,AD= 4 , CD=7.直线l经...

如图,梯形ABCD中,ABCD,AB=14,AD= 4  , CD=7.直线l经过A,D两点,且sinDAB=动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点PPM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),MPQ的面积为S.

(1)求腰BC的长;

(2)QBC上运动时,求St的函数关系式;

(3)(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;

(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?

 

(1)5;(2)S=﹣5t2+14t(0<t≤1)(3)不存在,理由见解析;(4)t=或t= 【解析】 试题(1)利用梯形性质确定点D的坐标,利用sin∠DAB=特殊三角函数值,得到△AOD为等腰直角三角形,求出梯形的高,然后利用勾股定理求出BC有长; (2)当0<t≤1时,S=×2t×(14﹣5t)=﹣5t2+14t; (3)在(2)的条件下,不存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的 (4)△QMN为等腰三角形的情形有两种,需要分类讨论,避免漏解. 试题解析:(1)5 (2)当0<t≤1时,S=×2t×(14﹣5t)=﹣5t2+14t (3)梯形ABCD的面积为42 ﹣5t2+14t=42程无解,所以△MPQ的面积不能为梯形ABCD的。 (4)△QMN为等腰三角形,有两种情形: ①如图4所示,点M在线段NM的右侧上 , MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4, 由MN=MQ,得16-7t=2t-4,解得t=; ②如图5所示,当Q在MN的左侧时,5t-5+(2t-4)-7=(2t-4)+4-4, 解得:t=. 故当t=或t=时,△QMN为等腰三角形. 考点: 一次函数综合题.  
复制答案
考点分析:
相关试题推荐

(本题满分12分)已知二次函数的图象如图.

1)求它的对称轴与轴交点D的坐标;

2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为ABC三点,若ACB=90°,求此时抛物线的解析式;

3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作D,试判断直线CMD的位置关系,并说明理由.

 

查看答案

2011•毕节地区)如图,在平面直角坐标系中,抛物线y=ax2+bx+ca≠0)的图象经过M10)和N30)两点,且与y轴交于D03),直线l是抛物线的对称轴.

1)求该抛物线的解析式.

2)若过点A﹣10)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.

3)点P在抛物线的对称轴上,⊙P与直线ABx轴都相切,求点P的坐标.

 

查看答案

如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求PBQ的面积的最大值.

 

查看答案

某商场销售某种品牌的手机,每部进货价为2500.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4.

(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?

(2)若设每部手机降低x,每天的销售利润为y,试写出yx之间的函数关系式.

(3)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?

 

查看答案

如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.