满分5 > 初中数学试题 >

阅读下列材料,完成任务: 自相似图形 定义:若某个图形可分割为若干个都与它相似的...

阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点EFGH分别是ABBCCDDA边的中点,连接EGHF交于点O,易知分割成的四个四边形AEOHEBFOOFCGHOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为     

(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点CCDAB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为     

(3)现有一个矩形ABCD是自相似图形,其中长ADa,宽ABbab).

请从下列AB两题中任选一条作答:我选择     题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a     (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a     (用含nb的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a     (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a     (用含mnb的式子表示).

 

(1);(2);(3)A、①;② ;B、①或;②或. 【解析】 试题(1)根据相似比的定义求解即可;(2)由勾股定理求得AB=5,根据相似比等于可求得答案;(3)A.①由矩形ABEF∽矩形FECD,列出比例式整理可得;②由每个小矩形都是全等的,可得其边长为b和a,列出比例式整理即可;B.①分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解;②由题意可知纵向2块矩形全等,横向3块矩形也全等,所以DN=b,然后分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解. 【解析】 (1)∵点H是AD的中点, ∴AH=AD, ∵正方形AEOH∽正方形ABCD, ∴相似比为: ==; 故答案为:; (2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5, ∴△ACD与△ABC相似的相似比为: =, 故答案为:; (3)A、①∵矩形ABEF∽矩形FECD, ∴AF:AB=AB:AD, 即a:b=b:a, ∴a=b; 故答案为: ②每个小矩形都是全等的,则其边长为b和a, 则b: a=a:b, ∴a=b; 故答案为: B、①如图2, 由①②可知纵向2块矩形全等,横向3块矩形也全等, ∴DN=b, Ⅰ、当FM是矩形DFMN的长时, ∵矩形FMND∽矩形ABCD, ∴FD:DN=AD:AB, 即FD: b=a:b, 解得FD=a, ∴AF=a﹣a=a, ∴AG===a, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即a:b=b:a 得:a=b; Ⅱ、当DF是矩形DFMN的长时, ∵矩形DFMN∽矩形ABCD, ∴FD:DN=AB:AD 即FD: b=b:a 解得FD=, ∴AF=a﹣=, ∴AG==, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即:b=b:a, 得:a=b; 故答案为:或; ②如图3, 由①②可知纵向m块矩形全等,横向n块矩形也全等, ∴DN=b, Ⅰ、当FM是矩形DFMN的长时, ∵矩形FMND∽矩形ABCD, ∴FD:DN=AD:AB, 即FD: b=a:b, 解得FD=a, ∴AF=a﹣a, ∴AG===a, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即a:b=b:a 得:a=b; Ⅱ、当DF是矩形DFMN的长时, ∵矩形DFMN∽矩形ABCD, ∴FD:DN=AB:AD 即FD: b=b:a 解得FD=, ∴AF=a﹣, ∴AG==, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即:b=b:a, 得:a=b; 故答案为: b或b.
复制答案
考点分析:
相关试题推荐

在矩形ABCD中,AB=8,BC=6,以EF为直径的半圆M如图所示位置摆放,点E与点A重合,点F与点B重合,点F从点B出发,沿射线BC以每秒1个单位长度的速度运动,点E随之沿AB下滑,并带动半圆M在平面滑动,设运动时间t(t0),当E运动到B点时停止运动.

发现:M到AD的最小距离为     ,M到AD的最大距离为     

思考:在运动过程中,当半圆M与矩形ABCD的边相切时,求t的值;

求从t=0到t=4这一时间段M运动路线长;

探究:当M落在矩形ABCD的对角线BD上时,求SEBF

 

查看答案

如图所示的益智玩具由一块主板AB和一个支撑架CD组成,其侧面示意图如图1所示,测得ABBD,AB=40cm,CD=25cm,链接点C为AB的中点,现为了方便儿童操作,须调整玩具的摆放,将AB绕点B顺时针旋转,CD绕点C旋转同时点D做水平滑动,如图2,当点C1到BD的距离为10cm时停止,求点D滑动的距离和点A经过的路径的长.(结果保留整数,参考数据:≈1.732,4.583,π,3.141,可使用科学计算器)

 

查看答案

某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.

(1)求一件A型、B型丝绸的进价分别为多少元?

(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.

求m的取值范围.

已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).

 

查看答案

如图,8个完全相同的小矩形拼成了一个大矩形,AB是其中一个小矩形的对角线,请在大矩形中完成下列画图,要求:仅用无刻度的直尺;保留必要的画图痕迹.

(1)在图1中画出一个45°的角,使点A或者点B是这个角的顶点,且AB为这个角的一边.

(2)在图2中画出线段AB的垂直平分线.

 

查看答案

如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;   

(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.