某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.00时他在活动中心接到爸爸的电话,因急事要求他在00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.
(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;
(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在00前回到家,并说明理由.
小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?
(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是 ;若x+y=0,则点P在坐标平面内的位置是 ;
(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.
如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.
一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.
(1)这个梯子的顶端A距地面有多高?
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?
在平面直角坐标系中描出点 A(﹣2,0)、B(3,1)、C(2,3),将各点用线段依次 连接起来,并解答如下问题:
(1)在平面直角坐标系中画出△ A′B′C′,使它与△ ABC 关于 x 轴对称,并直接写出△ A′B′C′三个顶点的坐标;
(2)求△ABC的面积.