满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于...

如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B

(1)求此抛物线的解析式及顶点坐标;

(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;

(3)过点Pm,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点EF,交直线OC于点G,求证:PF=EG

 

(1),(,);(2)向左个单位长度,再向上平移个单位长度.平移后的抛物线解析式为:.(3)证明见解析. 【解析】 试题(1)把A(-1,0),C(2,-3)代入y=x2+bx+c,得到关于b、c的二元一次方程组,解方程组求出b、c的值,即可求出抛物线的解析式,再利用配方法将一般式化为顶点式,即可求出顶点坐标; (2)先求出抛物线y=x2-x-2与y轴交点D的坐标为(0,-2),再根据平移规律可知将点(,-)向左平移个单位长度,再向上平移个单位长度,可得到点D,然后利用顶点式即可写出平移后的抛物线解析式为:y=x2-2; (3)先用待定系数法求直线OC的解析式为y=-x,再将x=m代入,求出yG=-m,yF=m2-2,yE=m2-m-2,再分别计算得出PF=-(m2-2)=2-m2,EG=yG-yE=2-m2,由此证明PF=EG. 试题解析:(1)【解析】 把A(-1,0),C(2,-3)代入y=x2+bx+c, 得:,解得:, ∴抛物线的解析式为:, ∵=, ∴其顶点坐标为:(,-); (2)【解析】 ∵ ∴当x=0时,y=-2, ∴D点坐标为(0,-2). ∵将点(,-)向左平移个单位长度,再向上平移个单位长度,可得到点D, ∴将向左平移个单位长度,再向上平移个单位长度,顶点为点D, 此时平移后的抛物线解析式为:; (3)证明:设直线OC的解析式为y=kx, ∵C(2,-3), ∴2k=-3,解得k=-, ∴直线OC的解析式为y=-x. 当x=m时,yF=m2-2,则PF=-(m2-2)=2-m2, 当x=m时,yE=m2-m-2,yG=-m, 则EG=yG-yE=2-m2, ∴PF=EG.
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点AC分别在x轴正半轴、y轴的负半轴上,二次函数y(xh)2+k的图象经过BC两点.

(1)求该二次函数的顶点坐标;

(2)结合函数的图象探索:当y>0时x的取值范围;

(3)设m,且Amy1),Bm+1,y2)两点都在该函数图象上,试比较y1y2的大小,并简要说明理由.

 

查看答案

(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

 

查看答案

如图,抛物线y=2(x-2)2与平行于x轴的直线交于点AB,抛物线顶点为C,△ABC为等边三角形,求SABC.

 

查看答案

东坡商贸公司购进某种水果的成本为20/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为,且其日销售量y(kg)与时间t(天)的关系如表:

(1)已知yt之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?

(2)问哪一天的销售利润最大?最大日销售利润为多少?

(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给精准扶贫对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.

 

查看答案

如图是抛物线形拱桥,已知水位在AB位置时,水面宽4米,水位上升3米,就达到警戒线CD,这时水面CD4米.若洪水到来时水位以每小时0.25米的速度上升,那么水过警戒线后多少小时淹到拱桥顶?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.