满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC...

如图,在RtABC中,∠C=90°,以BC为直径的⊙OAB于点DDEAC于点E,且∠AADE

(1)求证:DE是⊙O的切线;

(2)若AD=16,DE=10,求BC的长.

 

(1)证明见解析;(2)15. 【解析】 (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可. (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题. (1)证明:连结OD,∵∠ACB=90°, ∴∠A+∠B=90°, 又∵OD=OB, ∴∠B=∠BDO, ∵∠ADE=∠A, ∴∠ADE+∠BDO=90°, ∴∠ODE=90°. ∴DE是⊙O的切线; (2)连结CD,∵∠ADE=∠A, ∴AE=DE. ∵BC是⊙O的直径,∠ACB=90°. ∴EC是⊙O的切线. ∴DE=EC. ∴AE=EC, 又∵DE=10, ∴AC=2DE=20, 在Rt△ADC中,DC= 设BD=x,在Rt△BDC中,BC2=x2+122, 在Rt△ABC中,BC2=(x+16)2﹣202, ∴x2+122=(x+16)2﹣202,解得x=9, ∴BC=.
复制答案
考点分析:
相关试题推荐

在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

 

查看答案

如图,在平面直角坐标系中,ABC的三个顶点分别是A(1,1)、B(4,0)、C(4,4).

(1)按下列要求作图:

①将ABC向左平移4个单位,得到A1B1C1

②将A1B1C1绕点B1逆时针旋转得到90°得到A2B2C2

(2)求点C从开始到点C2的过程中所经过的路径长.

 

查看答案

已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.

(1)求实数k的取值范围;

(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.

 

查看答案

如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点BO分别落在点B1C1处,点B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2x轴上,依次进行下去.若点A,0),B(0,2),则点B2018的坐标为_____

 

查看答案

如图,直角中,,以为圆心,长为半径画四分之一圆,则图中阴影部分的面积是________.(结果保留

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.