【解析】
作EK∥AC交AB于K,根据平行线的性质可得出△BEK是等边三角形,∠DKE=∠DAC,故EK=BE,再根据DE=DC可知∠DEC=∠DCE,由三角形外角的性质可知∠B+∠KDE=∠DEC,因为∠DCA+∠ACB=∠DCE,故可得出∠B+∠KDE=∠DCA+∠ACB,再由∠B=∠ACB=60°可知∠KDE=∠DCA,故可得出△EKD≌△DAC,故AD=DK,进而可得BE=AD.根据BD+BC+CE=3AB即可得出结论.
作EK∥AC交AB于K.
∵△ABC是等边三角形,∴∠B=∠ACB=∠BAC=60°,AB=BC=AC.
∵EK∥AC,∠BKE=∠BAC=60°,∠KEB=∠ACB=60°,∴△BEK是等边三角形,∠DKE=∠DAC,∴EK=BE=BK.
∵DE=DC,∴∠DEC=∠DCE,∴∠B+∠KDE=∠DCA+∠ACB.
∵∠B=∠ACB=60°,∴∠KDE=∠DCA.
在△EKD与△DAC中,∵∠DKE=∠DAC,∠KDE=∠DCA,DE=DC,∴△EKD≌△DAC(AAS),∴AD=EK,∴BE=AD.
∵BD+BE=,CE=,∴BD+BE+2CE=,∴BA+AD+BC+EC=3BA=,∴AB=.
故答案为:.