满分5 > 初中数学试题 >

如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,...

如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如图1,过点PPEy轴于点E.求PAE面积S的最大值;

(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.

 

(1)抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);(2)△PAE面积S的最大值是;(3)点Q的坐标为(﹣2+,2﹣4). 【解析】 (1)根据抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,可以求得该抛物线的解析式,然后将函数解析式化为顶点式,从而可以得到该抛物线的顶点坐标,即点D的坐标; (2)根据题意和点A和点D的坐标可以得到直线AD的函数解析式,从而可以设出点P的坐标,然后根据图形可以得到△APE的面积,然后根据二次函数的性质即可得到△PAE面积S的最大值; (3)根据题意可知存在点Q使得四边形OAPQ为平行四边形,然后根据函数解析式和平行四边形的性质可以求得点Q的坐标. 【解析】 (1)∵抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点, ∴ ,得, ∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4, ∴抛物线的顶点坐标为(﹣1,4), 即该抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4); (2)设直线AD的函数解析式为y=kx+m, ,得, ∴直线AD的函数解析式为y=2x+6, ∵点P是线段AD上一个动点(不与A、D重合), ∴设点P的坐标为(p,2p+6), ∴S△PAE==﹣(p+)2+, ∵﹣3<p<﹣1, ∴当p=﹣时,S△PAE取得最大值,此时S△PAE=, 即△PAE面积S的最大值是; (3)抛物线上存在一点Q,使得四边形OAPQ为平行四边形, ∵四边形OAPQ为平行四边形,点Q在抛物线上, ∴OA=PQ, ∵点A(﹣3,0), ∴OA=3, ∴PQ=3, ∵直线AD为y=2x+6,点P在线段AD上,点Q在抛物线y=﹣x2﹣2x+3上, ∴设点P的坐标为(p,2p+6),点Q(q,﹣q2﹣2q+3), ∴, 解得,或(舍去), 当q=﹣2+时,﹣q2﹣2q+3=2﹣4, 即点Q的坐标为(﹣2+,2﹣4).
复制答案
考点分析:
相关试题推荐

已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.

(1)求证:DE=OE;

(2)若CDAB,求证:BC是⊙O的切线;

(3)在(2)的条件下,求证:四边形ABCD是菱形.

 

查看答案

如图,在平面直角坐标系中,一次函数y=﹣2x+b的图象与反比例函数y=的图象交于点A(1,n)、B(﹣2,2).

(1)求k、n、b的值;

(2)若x轴正半轴上有一点M,满足MAB的面积为12,求点M的坐标.

 

查看答案

某电商在购物平台上销售一款小电器,其进价为45/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格x(元)满足函数关系:y=﹣2x+200.为保证市场稳定,供货商规定销售价格不得低于75/件.

(1)写出每天的销售利润w(元)与销售价格x(元)的函数关系式(不必写出x的取值范围);

(2)每件小电器的销售价格定为多少元时,才能使该款小电器每天获得的利润是1200元?

 

查看答案

如图,AB是⊙O的直径,弦CDAB于点E,点P在⊙O上,弦PBCD交于点F,且FC=FB.

(1)求证:PDCB;

(2)若AB=26,EB=8,求CD的长度.

 

查看答案

某学校自主开发了A书法、B阅读,C绘画,D器乐四门选修课程供学生选择,每门课程被选到的机会均等.

(1)若学生小玲计划选修两门课程,请写出她所有可能的选法;

(2)若学生小强和小明各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.