以下各点中,在正比例函数y=2x图象上的是( )
A. (2,1) B. (1,2) C. (—1,2) D. (1,—2)
如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.
已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线;
(3)在(2)的条件下,求证:四边形ABCD是菱形.
如图,在平面直角坐标系中,一次函数y=﹣2x+b的图象与反比例函数y=的图象交于点A(1,n)、B(﹣2,2).
(1)求k、n、b的值;
(2)若x轴正半轴上有一点M,满足△MAB的面积为12,求点M的坐标.
某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格x(元)满足函数关系:y=﹣2x+200.为保证市场稳定,供货商规定销售价格不得低于75元/件.
(1)写出每天的销售利润w(元)与销售价格x(元)的函数关系式(不必写出x的取值范围);
(2)每件小电器的销售价格定为多少元时,才能使该款小电器每天获得的利润是1200元?
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.
(1)求证:PD∥CB;
(2)若AB=26,EB=8,求CD的长度.