已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.
(1)如图1,设点P的运动时间为t(s),那么t= (s)时,△PBC是直角三角形;
(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?
(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.
在△ABC中,∠A=40°
(1)如图1,若两内角∠ABC、∠ACB的角平分线交于点P,则∠P= ,∠A与∠P之间的数量关系是 .为什么有这样的关系?请证明它;
(2)如图2,若内角∠ABC、外角∠ACE的角平分线交于点P,则∠P= ,∠A与∠P之间的数量关系是 ;
(3)如图3,若两外角∠EBC、∠FCB的角平分线交于点P,则∠P= ,∠A与∠P之间的数量关系是 .
仔细阅读下面例题:
例题:已知二次三项式x2+5x+m有一个因式是x+2,求另一个因式以及m的值.
【解析】
设另一个因式x+n,得x2+5x+m=(x+2)(x+n),
则x2+5x+m=x2+(n+2)x+2n,
∴n+2=5,m=2n,
解得n=3,m=6,
∴另一个因式为x+3,m的值为6.
依照以上方法解答下面问题:
(1)若二次三项式x2﹣7x+12可分解为(x﹣3)(x+a),则a= .
(2)若二次三项式2x2+bx﹣6可分解为(2x+3)(x﹣2),则b= .
(3)已知二次三项式2x2+9x﹣k有一个因式是2x﹣1,求另一个因式以及k的值.
某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T恤衫商店共获利多少元?
如图,△ABC中,∠ACB=90°,AC=BC,直线l过点C,BD⊥l,AE⊥l,垂足分别为D、E.
(1)当直线l不与底边AB相交时,求证:ED=AE+BD;
(2)如图2,将直线l绕点C顺时针旋转,使l与底边AB相交时,请你探究ED、AE、BD三者之间的数量关系.
在直角坐标系中,已知点 A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称.
(1)求A、B两点的坐标;
(2)如果点B关于x轴的对称点是C,在图中标出点A、B、C,并求△ABC的面积.